Review: An Efficient Solution to the Five-Point Relative Pose Problem

Nistรฉr, D. (2004). An efficient solution to the five-point relative pose problem. IEEE transactions on pattern analysis and machine intelligence, 26(6), 756-770.

Abstract

์ด ๋…ผ๋ฌธ์€ ๊ณ ์ „์ ์ธ Five-Point relative pose ๋ฌธ์ œ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•œ๋‹ค. ํ•ต์‹ฌ์€ 5๊ฐœ์˜ ํ•ด๋‹น ํฌ์ธํŠธ๊ฐ€ ์ฃผ์–ด์ง€๋ฉด ๋‘ ๊ฐœ์˜ calibrated view ์‚ฌ์ด์—์„œ ์ƒ๋Œ€์ ์ธ ์นด๋ฉ”๋ผ ํฌ์ฆˆ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 10์ฐจ ๋‹คํ•ญ์‹์˜ ๊ณ„์ˆ˜๋ฅผ closed form์œผ๋กœ ๊ณ„์‚ฐํ•œ ๋‹ค์Œ ๊ทธ ๊ทผ์„ ์ฐพ๋Š” ๊ฒƒ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ฌธ์ œ์˜ ๊ณ ์œ ํ•œ ๋ณต์žก๋„์— ํ•ด๋‹นํ•˜๋Š” numerical implementation์— ์ ํ•ฉํ•œ ์ตœ์ดˆ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜์น˜ ์ •ํ™•๋„๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ๋˜ํ•œ ์ตœ์†Œํ•œ์˜ ๊ฒฝ์šฐ์™€ ๊ณผ์ž‰๋œ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด ๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ์€ ์กฐ๊ฑด์—์„œ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ฏธ ์ž˜์•Œ๋ ค์ง„ 8-point์™€ 7-point ๋ฐฉ์‹์˜ ์„ฑ๋Šฅ๊ณผ ๋น„๊ตํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ robustํ•œ ๊ฐ€์„ค๊ณผ ํ…Œ์ŠคํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ structure์™€ motion์„ ๋‚ฎ์€ ๋”œ๋ ˆ์ด์˜ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์€ ์ฃผ์š” ์ปจํผ๋Ÿฐ์Šค์—์„œ visual input๋งŒ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ์—ฐ๋˜์—ˆ๋‹ค.

1. Introduction

Structure estimation ๋ฐ Motion estimation์ด robustํ•˜๊ณ  ์ •ํ™•ํ•˜๋ ค๋ฉด ์‹ค์ œ๋กœ(๋ณดํ†ต) 5๊ฐœ ์ด์ƒ์˜ ํฌ์ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์•ผํ•œ๋‹ค. ๋งŽ์€ ์ ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด์˜ ๊ณ ์ „๋ฐฉ๋ฒ•๋“ค์€ ๋ชจ๋“  ์ ์— ๋Œ€ํ•ด least squares measure(์ตœ์†Œ์ž์Šน๋ฒ•)์„ ์ตœ์†Œํ™” ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. [18] ์šฐ๋ฆฌ๋Š” five-point ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์œ„ํ•ด์„œ RANSAC [8], [26] ๋‚ด์˜ hypothesis generator๋ฅผ ์‘์šฉํ–ˆ๋‹ค. five-point ๋Œ€์‘์„ ํฌํ•จํ•˜๋Š” ๋งŽ์€ ๋žœ๋ค ์ƒ˜ํ”Œ์„ ์ทจํ•œ๋‹ค. ๊ฐ ์ƒ˜ํ”Œ์€ ๋‘ ๊ฐœ ์ด์ƒ์˜ view์—์„œ ๋ชจ๋“  ํฌ์ธํŠธ์— ๋Œ€ํ•ด robustํ•œ statistical ์ธก์ •์œผ๋กœ relative orientation์œผ๋กœ ์—ฌ๋Ÿฌ hypotheses๋ฅผ ์‚ฐ์ถœํ•ด๋‚ธ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๊ฐ€์žฅ ์ ํ•ฉํ•œ hypothesis๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‹ค๋“ฌ๋Š”๋‹ค. ์ด๋Ÿฌํ•œ hypothesis ๋ฐ test architecture๋Š” ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” point correspondence๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ํ‘œ์ค€ ๋ฐฉ๋ฒ•์ด ๋˜์—ˆ์œผ๋ฉฐ [41], [48], [14], [24], ์ˆ˜ ๋ฐฑ๊ฐœ์˜ view์— ๊ฑธ์นœ automatic reconstruction์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“ค์—ˆ๋‹ค. [1], [34], [7], [25].

๊ธฐ์กด์˜ intrinsic calibration์˜ ์š”๊ตฌ ์กฐ๊ฑด์€ ์ง€๋‚œ 10๋…„ ๋™์•ˆ ์™„ํ™”๋˜์–ด [5], [12], [14] , ๋œ ๋ณต์žกํ•˜๊ณ  ๋” ์—ฐํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๋ฐœ์ „ํ–ˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ์™œ calibrated setting์„ ์ด์šฉํ•˜๋Š”๊ฐ€? ์ด๋ก ์ ์ธ ๊ด€์‹ฌ๊ณผ ๋ณ„๋„๋กœ ์ด๋Š” ์†”๋ฃจ์…˜์˜ ์•ˆ์ •์„ฑ(stability)๊ณผ ๊ณ ์œ ์„ฑ(uniqueness)์„ ์œ„ํ•œ ๊ฒƒ์ด๋‹ค. ๊ณ ์œ ํ•œ calibration constraint๋ฅผ ์ ์šฉํ•˜๋ฉด structure ๋ฐ motion estimation์˜ ์ •ํ™•์„ฑ๊ณผ robustness์— ๋ชจ๋‘ ์ค‘์š”ํ•œ ๊ฐœ์„ ์„ ์ œ๊ณตํ•œ๋‹ค. ํ˜„์žฌ ์ด๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ํ‘œ์ค€ ๋ฐฉ๋ฒ•์€ ๋ฐ˜๋ณต์ ์œผ๋กœ, calibrate๋˜์ง€ ์•Š์€ ์ดˆ๊ธฐ estimate์— ์ด์–ด, calibration constraint์™€ ์ผ์น˜ํ•˜๋„๋ก estimate๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” refinement๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง„๋‹ค. intrinsic parameter๊ฐ€ prioriํ•˜๊ฒŒ ์•Œ๋ ค์ง„ ๊ฒฝ์šฐ, five-point ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ calibration constraint ์กฐ๊ฑด์„ ์ •ํ™•ํ•˜๊ฒŒ ์ ์šฉํ•˜๊ณ  Euclidean reconstruction์„ ์–ป๋Š” ๊ฐ€์žฅ ์ข‹์€ ๋ฐฉ๋ฒ•์ด๋‹ค.

uncalibrated ๋ฐฉ๋ฒ•์€ ๊ฐ€๋Šฅํ•œ ์†”๋ฃจ์…˜์˜ ์—ฐ์†์„ฑ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋™์ผ ํ‰๋ฉด์˜ scene point์— ๋งˆ์ฃผ์ณ์„œ ์‹คํŒจํ•œ๋‹ค. [43], [35]์—์„  ๋ชจ๋ธ ์„ ํƒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ degeneracy๋ฅผ ๋‹ค๋ฃจ๊ณ  homographic ๋ชจ๋ธ๊ณผ ์ผ๋ฐ˜ uncalibrated ๋ชจ๋ธ ์‚ฌ์ด๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ์ „ํ™˜ํ•˜๋Š” ๊ฒƒ์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. calibrated setting์—์„œ ๋™์ผ ํ‰๋ฉด์˜ scene point๋Š” ์ตœ๋Œ€ 2๋ฐฐ์˜ ambiguity๋ฅผ ์œ ๋ฐœํ•œ๋‹ค. [21], [23]. ์„ธ ๋ฒˆ์งธ ๊ด€์ ์—์„œ ambiguity๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํ•ด๊ฒฐ๋œ๋‹ค. ์ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ, 3๊ฐœ ์ด์ƒ์˜ ๋ทฐ์— ๋Œ€ํ•ด 5์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” RANSAC ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ์ผ๋ฐ˜ ๊ตฌ์กฐ์— ์ ์šฉ๋˜๋ฉด์„œ๋„ scene์˜ planarity์—๋„ robustํ•˜๋ฉฐ, degeneracy์— ์˜์กดํ•˜๊ฑฐ๋‚˜ ๋ช…๋ฐฑํ•˜๊ฒŒ ์ฐพ์•„๋‚ด์ง€์•Š๊ณ  ๊ณ„์† ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ž‘๋™ํ•œ๋‹ค. ๋ณธ์งˆ์ ์œผ๋กœ, calibrated ๋ชจ๋ธ์€ ํ‰๋ฉด ๋ฐ ์ผ๋ฐ˜ structure ์ผ€์ด์Šค๋ฅผ ์™„๋ฒฝํ•˜๊ฒŒ ์ปค๋ฒ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ๊ฑฐ์˜ ํ‰๋ฉด์ธ ๊ฒฝ์šฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์—ฌ์ง€๋ฅผ ์ค€๋‹ค. (planar ๋˜๋Š” uncalibrated๋œ, ์ผ๋ฐ˜ structure ๋ชจ๋ธ์ด ์ž˜ ์ ์šฉ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋„ ์ฒ˜๋ฆฌ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.)

3. The Five-Point Algorithm

5๊ฐœ์˜ ๋Œ€์‘์ ์— ๋Œ€ํ•ด์„œ ์—ํ”ผํด๋ผ ์ œํ•œ $ qโ€™^T E q = 0 $์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์Œ ์‹์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค.

$$ \tilde{q}^T \tilde{E} = 0 $$

์—ฌ๊ธฐ์„œ $\tilde{q}^T$ ๋Š” ๋ชจ๋“  5๊ฐœ์˜ ์ ์„ ๋ฒกํ„ฐ๋กœ ์Œ“์€ ๊ฒƒ์œผ๋กœ 5 x 9์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š”๋‹ค. ์—ฌ๊ธฐ์„œ $E$๋ฅผ 4๊ฐœ์˜ ๋ฒกํ„ฐ $X, Y, Z, W$๋กœ ์ด๋ฃจ์–ด์ง€๋Š” ๋„์ŠคํŽ˜์ด์Šค๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ๋ณดํ†ต ์ด๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” SVD๋ฅผ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์—ฌ๊ธฐ์„œ๋Š” QR-factorisation์ด ๋” ํšจ์œจ์ ์ด์—ˆ๋‹ค.

$$ E = xX + yY + zZ + wW $$

4๊ฐœ์˜ ์Šค์นผ๋ผ๋Š” ๊ณตํ†ต๋œ ์Šค์นผ๋ผ ํŒฉํ„ฐ์—์„œ ์ •์˜๋˜๋ฏ€๋กœ $w=1$๋ผ๊ณ  ๊ฐ€์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 5์  ์ด์ƒ์˜ ์ ์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ๋กœ ํ™•์žฅ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด ๊ฒฝ์šฐ ๊ฐ€์žฅ ์ž‘์€ ํŠน์ด๊ฐ’์„ ์‚ฌ์šฉํ•˜๋ฉด ๋  ๊ฒƒ์ด๋‹ค. ์œ„์˜ ์‹์„ $ EE^T E โ€“ 1/2 \text{trace}(EE^T) E = 0$์— ์‚ฝ์ž…ํ•œ ๋’ค, Gauss-Jordan ์†Œ๊ฑฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋’ค ์ •๋ฆฌํ•˜๋ฉด $x, y, z, w$๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค.

3.1 Recovering R and t from E

E์—์„œ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” R์€ $R_a = UDV^T$์™€ $R_b = UD^T V^T$ ๋‘๊ฐ€์ง€, $t \sim t_u \equiv [u_{13}, u_{23}, u_{33} ]^T $ ์ด๊ธฐ์— ์ด๋“ค ์ค‘ ์–ด๋А๊ฒƒ์„ ์กฐํ•ฉํ•˜์—ฌ๋„ ์—ํ”ผํด๋ผ ์ œํ•œ์„ ๋งŒ์กฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจํ˜ธ์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฒซ๋ฒˆ์งธ ์นด๋ฉ”๋ผ ํ–‰๋ ฌ์„ $[I | 0]$์œผ๋กœ, ์œ ๋‹› ๊ธธ์ด๋ฅผ $t$๋กœ ์ •์˜ํ•œ๋‹ค. ๋‹ค์Œ 4๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ํ•ด๋“ค์„ ๋‘๋ฒˆ์งธ ์นด๋ฉ”๋ผ์— ๋Œ€ํ•ด์„œ ์‹œํ—˜ํ•ด๋ณธ๋‹ค. 4๊ฐœ ์ค‘ ํ•˜๋‚˜๋Š” ์˜ฌ๋ฐ”๋ฅธ ๊ตฌ์„ฑ์ด๋ฉฐ, ๋‚˜๋จธ์ง€ ํ•˜๋‚˜๋Š” ํ•˜๋‚˜์˜ ๋ทฐ๋ฅผ 180๋„ ๋Œ๋ฆฐ ๊ฒƒ์ด๋‹ค. ๋‚˜๋จธ์ง€ ๋‘๊ฐœ๋Š” ์ œ๋Œ€๋กœ๋œ ๊ตฌ์„ฑ์„ ๋’ค์ง‘์€ ๊ฒƒ๊ณผ ๊ทธ๊ฒƒ์„ ์„œ๋กœ ๋ฐ˜๋Œ€๋กœ ๊ตฌ์„ฑํ•œ ๊ฒƒ์ด๋‹ค. ์˜ฌ๋ฐ”๋ฅธ ๊ตฌ์„ฑ์ธ์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” cheirality ์ œํ•œ์„ ์‚ฌ์šฉํ•œ๋‹ค.

3.2 Efficiency Considerations

์ •๋ฆฌํ•˜์ž๋ฉด ๊ณ„์‚ฐ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  1. 5 x 9 ํ–‰๋ ฌ์˜ ๋„์ŠคํŽ˜์ด์Šค๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค.

  2. ํ๋น… ์ œํ•œ ์กฐ๊ฑด์„ ํ™•์žฅํ•œ๋‹ค.

  3. Gauss-Jordan ์†Œ๊ฑฐ๋ฒ•์„ 9 x 20 ํ–‰๋ ฌ A์— ์ ์šฉํ•œ๋‹ค.

  4. 2๊ฐœ์˜ 4 x 4 ๋‹คํ•ญ ํ–‰๋ ฌ B, C ๋ฅผ ํ™•์žฅํ•œ ๋‹ค์Œ ์†Œ๊ฑฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ 10์ฐจ ๋‹คํ•ญ์‹์„ ์–ป๋Š”๋‹ค.

  5. ์ด ๋‹คํ•ญ์‹์˜ ํ•ด๋ฅผ ๊ตฌํ•œ๋‹ค.

  6. ๊ตฌํ•ด์ง„ ํ•ด์— ๋Œ€ํ•˜์—ฌ R๊ณผ t๋ฅผ ๋ณต์›ํ•˜๊ณ , ๋ชจํ˜ธ์„ฑ์„ ์ œ๊ฑฐํ•œ๋‹ค.

1,5,6 ๋‹จ๊ณ„์—์„œ SVD๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋ถˆ๋ฌธ์œจ์ด์ง€๋งŒ QR-factorisation์ด ํšจ์œจ์ ์ด์—ˆ๋‹ค.

4. Planar Structure Degeneracy

5. Applying the Algorithm Together with Random Sample Consensus

RANSAC์— ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ 2๋ทฐ์™€ 3๋ทฐ๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ๋กœ ๋‚˜๋ˆ„์–ด ๋ณด์•˜๋‹ค. ๋žœ๋ค ์ƒ˜ํ”Œ๋ง์„ ํ•  ๋•Œ ๊ฐ๊ฐ 5๊ฐœ์˜ ๋Œ€์‘์ ์„ ์ถ”์ถœํ•ด์•ผ ํ•œ๋‹ค. ์ถ”์ถœ๋œ ๋Œ€์‘์ ์— 5์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•  ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ์—ฌ๋Ÿฌ๊ฐœ์˜ ๊ฐ€์„ค๋“ค์ด ์ƒ์„ฑ๋œ๋‹ค. 2๋ทฐ์˜ ๊ฒฝ์šฐ ๊ฐ ๊ฐ€์„ค๋“ค์€ ๋ชจ๋“  ์  ๋Œ€์‘์— ๋Œ€ํ•˜์—ฌ ํ‰๊ฐ€ํ•œ ๋’ค, ๊ฐ€์žฅ ์ ์ˆ˜๊ฐ€ ๋†’์€ ๊ฒƒ์„ ์„ ํƒํ•œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๊ฐ€์žฅ ์ข‹์€ ๊ฐ€์„ค์€ ๋ฐ˜๋ณต์ ์ธ ์ •๊ตํ™”๋ฅผ ํ†ตํ•ด ๋”์šฑ ์ข‹์•„์ง„๋‹ค. ๋งŒ์•ฝ 3๊ฐœ ํ˜น์€ ๋” ๋งŽ์€ ๋ทฐ๊ฐ€ ์žˆ์„ ๊ฒฝ์šฐ, 5๊ฐœ์˜ ๋Œ€์‘์  ์ƒ˜ํ”Œ์„๋กœ๋ถ€ํ„ฐ ์œ ์ผํ•œ ํ•ด๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์–ด ๋ชจํ˜ธ์„ฑ์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๊ณ , ์ ๋“ค์ด ์„œ๋กœ ํ‰๋ฉด์— ์žˆ์„ ๊ฒฝ์šฐ์—๋„ ํ•ด๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ 5์  ์ƒ˜ํ”Œ์—์„œ ์ฒซ๋ฒˆ์งธ์™€ ๋งˆ์ง€๋ง‰ ๋ทฐ์— ๋Œ€ํ•ด์„œ 5์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ ์šฉํ•œ๋‹ค์Œ, ๊ฐ€๋Šฅํ•œ ์นด๋ฉ”๋ผ ํ–‰๋ ฌ์„ ๊ตฌํ•œ๋‹ค. ๋‚˜๋จธ์ง€ ๋ทฐ์— ๋Œ€ํ•ด์„œ๋Š” 3์  ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ดํ‹ฐ๋“œ ์›๊ทผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜๋„๋ก ํ•œ๋‹ค. 5์ ์„ ๋ชจ๋“  ๋ทฐ์— ๋Œ€ํ•ด์„œ ๋ฆฌํ”„๋กœ์ ์…˜ ํ•ด๋ณด๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋„ ๊ฐ€์„ค์˜ ์ข€์ˆ˜๋ฅผ ๋‚ด๊ธฐ์— ์ถฉ๋ถ„ํ•˜๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ชจ๋“  ์ƒ˜ํ”Œ๋“ค์— ๋Œ€ํ•œ ์ ์ˆ˜๋ฅผ ๋งค๊ธธ ์ˆ˜ ์žˆ๋‹ค.

Last updated

Was this helpful?